在快节奏的商业环境中,数据分析成为了企业决策的重要工具。然而,数据分析项目的成功不仅取决于分析技术的高低,更在于其能否真正解决业务问题并带来实际价值。MVP(最小可行产品)分析法,这一原本用于产品设计的思路,现在也被广泛应用于数据分析领域,帮助企业以最小的投入快速验证数据分析的有效性。
很多同学雄心勃勃想在工作中做出成绩,这里推荐数据分析的 MVP 方法,能为大家的工作保驾护航。同学们坐稳扶好,下边开始分享哦。
一、数据分析的 MVP 是什么
MVP(Minimum Viable Product)原本是应用于产品设计的方法。指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。
数据分析的 MVP 方法,是在数据正式生产出来以前,先根据数据需求和使用场景,提供虚拟的数据结果,从而检验数据有效性,发现真正的数据需求。
这套方法在数据分析领域非常好使!因为它能解决数据分析的核心难题:做了半天,没有屁用。数据分析背后的《统计学》《数学》《运筹学》《博弈论》《机器学习》各种理论多了去了,因此极易引发自嗨。
做数据的自己嗨得不行,各种理论算的腾挪跌宕,到了用户那里:
" 我早知道了!"
" 你做的有啥用!"
" 你做的咋落地!"
一键三连。这项目就必败无疑了。
数据分析的 MVP 方法,目的就是提前梳理清楚:数据如何对业务有用的逻辑,从而避免上述悲剧。而看似牛逼,实则然并卵的数据分析,在现实中多的很……
二、1.0 版本 MVP
举个简单例子,比如互联网平台 - 广告销售团队提出:" 要建立业务员用户画像,掌握每个业务员的性别、年龄、行为、转化率,以提高业绩 "。
这时候咋办?
如果用 MVP 思路,先不要急着去跑数,也不要急着列一大堆 " 用户画像标准指标 ",而是直接拿着业务方提的最初的需求:" 性别、年龄、行为、转化率,以提高业绩 " 直接给一个虚拟结果,然后确认:" 如果我真的提供这些东西,你们真的能提高业绩?" ——让他确认。
至少只基于这一句话来看,数据分析能输出的结论是完全无用的。1.0 版本的 MVP 测试不通过,要么放弃这个需求,要么继续想想:该怎么更好的抓用户痛点。这样把数据推向 2.0 版本。
三、2.0 版本 MVP
进一步看,1.0 版本的问题在于:没有清晰目标。所谓画像指标一大堆,到底看了要干啥没想清楚。如果聚集目标,比如:找到业绩好的业务员。这样就更清晰了一步。
这里就需要引入更多分析,因为 " 好 "" 不好 " 本身就需要做分析
用什么指标衡量好
连续好,还是单次好
在什么范围内评选好
在这个阶段,做 MVP 时,可以直接把一些可预计的,很纠结的问题提前丢出来,和业务方一起提前思考应对方案,而不是等着跑了一大堆数据,自己闷头计算好几轮以后再讨论。越早讨论,越能提前刨累,避免无用功。
比如评价:" 好 / 坏 " 中常见的多指标重叠问题(如下图)。
比如业绩表现不稳定问题(如下图):
至于和本阶段无关的指标,可以大胆做减法,丢了再说。有新的目标出来,再围绕新的目标组织数据。避免不分青红皂白,先捞一堆数再说的做法——数据分析师不能按时下班,都是被这些破事折腾的。
把这些梳理清楚,就有了 2.0 版本的 MVP。(如下图)
看起来,似乎已经比 1.0 版清晰了很多,删减了很多无效指标,聚焦到一个明确的目标上。注意,这时候仍然还没有跑任何数据,只是基于经验的虚拟,但是已经能把 " 早就知道了 " 的数据暴露出来,并且能过滤掉 " 其实没啥用 " 的指标,并且把可能有歧义的地方以具体案例的形式具体讨论,从而极大规避问题。
但是注意,这还不是一个合格的 MVP,因为知道谁好谁坏,又能怎样?知道李四是真的好了,大家就能成为李四吗?还是根本李四是不可复制的,我得找更多类似李四的人进来?这些问题都没有答案。所以此时还是无法直接得出:这数据就能提高业绩。MVP 测试不通过,继续!
四、3.0 版本 MVP
只告诉谁好,谁不好是不能提升业绩的。业绩是一线做出来的,一线需要的是 SOP,是弹药,因此数据要进一步做,比如:
优秀标杆的数据指标(呼叫次数?时间分配?跟进机会?)
优秀标杆的目标客户(是否特定客户容易成功?)
优秀标杆的销售技巧(用哪些话术?利用哪些物料 / 活动?)
注意,这里已经不仅仅是数据的范畴了,数据只能打标签,列指标。但话术、语气、时机把握是需要培训 / 业务部门提供的。因此在此阶段做 MVP 的时候,可以直接向业务部门明确:是否只输出数据就能满足需求。如果不能,趁早拉其他部门一起干活,不要自己埋头别憋数据。
五、4.0 版本 MVP
看起来 3.0 版本已经很厉害了。然而有个隐藏的 BUG,就是别人有没有可能学会。注意,这个不可知,会极大的阻碍业务认可数据分析的结果——落地不见效,到底是因为数据分析结论错了,还是执行没到位?这个可得提前安排明白,不然事后背锅分分钟的事。
因此,还需要在现在版本基础上,增加测试环节,检验到底有没有用。
这样,又涉及到:
选多大范围进行测试
测试时间周期多长
如何排除节假日、活动等其他因素
测试结果认证标准
把这些想清楚了,就有 4.0 版本。
在这个阶段,终于能将数据需求,指向一个业务期望的 " 提升业绩 " 的结果了。并且最终结果有测试数据回收验证,即使测试不成立,也有备用方案垫底。这时候可以放心大胆去跑数,跑出来一定有用。
六、MVP 测试的广泛应用
注意,MVP 测试,是紧密围绕用户需求的。上边的例子之所以做了好几个版本,源头上是因为用户期望值高,指望直接见业绩。如果用户期望值不高,MVP 测试可以很简单。
比如:
用户需求是:目前没有数据→ 尽快提供数据
用户需求是:目前数据太多→ 删掉无用指标
用户需求是:目标数据太乱→ 重新整理逻辑
用户需求是:不清楚问题在哪→ 输出可量化的问题点
这些只要提前虚拟个数据,做个图确认下需求,就能解决
稍微复杂一点的,比如用户需求是:精准预测销量,可能只要梳理两三步,就能更细化范围,提升有用程度(如下图)。
七、为什么要推 MVP 方法
数据分析领域,一直有一个八爪鱼派在流行,就是不管有没有用,不管有没逻辑,像一只八爪鱼一样丢一大堆指标过来(如下图)
这种做法,张牙舞爪,看着厉害,可是实际上却是项目失败的根源。让做数据的人误以为工作就是做作业,不考虑实际效果,一味贪大求多,最后累得半死还不讨好。
相比之下,做到下面几点,才能更快地积累分析经验,让数据更好发挥作用。
多研究业务数据的基本形态
多发现业务对数据实际需求
多测试数据有用的点
剔除无用的,空洞的,高大全的指标
本文由人人都是产品经理作者【接地气的陈老师】,微信公众号:【接地气的陈老师】,原创 / 授权 发布于人人都是产品经理,未经许可,禁止转载。
题图来自 Unsplash,基于 CC0 协议。
登录后才可以发布评论哦
打开小程序可以发布评论哦